
PMaude: Rewrite-based Specification

Language for Probabilistic Object Systems

Gul Agha1 José Meseguer2 Koushik Sen3

Department of Computer Science,
University of Illinois at Urbana Champaign, USA.

Abstract

We introduce a rewrite-based specification language for modelling probabilistic concurrent and
distributed systems. The language, based on PMaude, has both a rigorous formal basis and
the characteristics of a high-level rule-based programming language. Furthermore, we provide
tool support for performing discrete-event simulations of models written in PMaude, and for
statistically analyzing various quantitative aspects of such models based on the samples that are
generated through discrete-event simulation. Because distributed and concurrent communication
protocols can be modelled using actors (concurrent objects with asynchronous message passing),
we provide an actor PMaude module. The module aids writing specifications in a probabilistic
actor formalism. This allows us to easily write specifications that are purely probabilistic – and
not just non-deterministic. The absence of such (un-quantified) non-determinism in a probabilistic
system is necessary for a form of statistical analysis that we also discuss. Specifically, we introduce
a query language called Quantitative Temporal Expressions (or QuaTEx in short), to query various
quantitative aspects of a probabilistic model. We also describe a statistical technique to evaluate
QuaTEx expressions for a probabilistic model.

Keywords: Specification language, PMaude, actors, probabilistic specification, non-deterministic
specification, query language, QuaTEx

1 Introduction

In modelling large-scale concurrent systems, it is infeasible to account for the
complex interplay of the different factors that affect events in the system. For
example, in a large scale computer network like the Internet, network delays,

1 Email: agha@cs.uiuc.edu
2 Email: meseguer@cs.uiuc.edu
3 Email: ksen@cs.uiuc.edu

Electronic Notes in Theoretical Computer Science 153 (2006) 213–239

1571-0661 © 2 006 Elsev ier B.V .

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.10.040
Open access under CC BY-NC-ND license.

mailto:agha@cs.uiuc.edu
mailto:meseguer@cs.uiuc.edu
mailto:ksen@cs.uiuc.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

congestion, and failures affect each other in ways that make it infeasible to
model the system deterministically. However, non-deterministic models do
not allow us to reason about the likely behaviors of a system; probabilistic
modelling and analysis is necessary to understand such behavior.

A probabilistic model allows us to quantify a number of sources of indeter-
minacy in concurrent systems. The exact time duration of a behavior often
depends on the schedulers, loads, etc. and may be represented by a stochastic
process. Process or network failures may occur with a certain rate. Random-
ness can also come in explicitly: some parts of the system may implement
randomized algorithms.

There has been considerable research on models of probabilistic systems.
Both light-weight formalisms such as extensions of UML and SDL and rigorous
formalisms based on process algebra [17,16], Petri-nets [23], and stochastic
automata [13] has been proposed and successfully used to model and analyze
probabilistic systems. The light-weight formalisms are closer to programming
languages and easy for engineers to learn; however, some may lack a rigorous
semantics. On the other hand, rigorous formalisms can be too cumbersome
for engineers to adopt.

To bridge the gap between light-weight and rigorous formalisms, we pro-
pose a rewrite-based specification language, called PMaude, for specifying
probabilistic concurrent systems. PMaude, which is based on probabilistic
rewrite theories, has both a rigorous formal basis and the characteristics of
a high-level programming language. 4 Furthermore, we provide tool support
for performing discrete-event simulations of models written in PMaude and
to statistically analyze various quantitative aspects of such models. In ad-
dition, because various distributed and concurrent communication protocols
can be modelled using asynchronous message passing concurrent objects or ac-
tors [2,4], we provide an actor PMaude module to aid writing specifications
in a probabilistic-actor formalism.

Our PMaude language extends standard rewrite theories with support for
probabilities. Rewrite theories [24] have already been shown to be a natural
and useful semantic framework which unifies different kinds of concurrent
systems [24], as well as models of real-time [27]. The Maude system [11,12]
provides an execution environment for rewrite theories. The discrete-event
simulator for PMaude has been implemented as an extension of Maude.

Actor PMaude extends the actor model [2,4] of concurrent computation
by allowing us to explicitly associate probability distribution with time for

4 Note that there are other formalisms which provide both rigorous formal basis and the fea-
tures of high-level programming languages [22,9]. PMaude differs from them as it extends
rewrite theories rather than extending process-algebra or automata based formalisms.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239214

message delay and computation. Actors are inherently autonomous com-
putational objects which interact with each other by sending asynchronous
messages. The actor model has been formalized and applied to dependable
computing [33] and software architecture [5].

A motivation for writing a specification in actor PMaude is that it allows
us to easily write specifications that have no un-quantified non-determinism.
In Section 3.1, we outline simple requirements which ensure that a specification
written in actor PMaude is free of un-quantified non-determinism, i.e. all
non-determinism has been replaced by quantified non-determinism such as
probabilistic choices and stochastic real-time. Absence of (un-quantified) non-
determinism is necessary for the kind of statistical analysis that we propose.
This analysis technique extends the existing numerical and statistical model-
checking techniques [8,22,30,31]. In particular, in our statistical analysis we
allow evaluation of quantitative temporal expressions, called QuaTEx, which
allows us get more quantitative insight about a probabilistic model than what
is possible using traditional model-checking of temporal properties.

This paper makes the following contributions:

1. We introduce PMaude, a language for writing specifications in probabilis-
tic rewrite theories. We also explain how models specified in PMaude are
simulated in the underlying Maude language.

2. We provide an actor extension of probabilistic rewrite theories which we
claim is a natural model to write various probabilistic network protocols.
The extension also helps us to write specifications which are free from non-
determinism. This is essential for the form of statistical analysis that we
introduce.

3. We introduce a new query language QuaTEx to write quantitative tempo-
ral expressions which can be used to query various quantitative aspects of
a probabilistic model with no non-determinism. We describe a statistical
technique to evaluate such expressions using discrete-event simulation. We
have implemented the technique as a part of the tool VeStA. Furthermore,
we describe the integration of PMaude with VeStA.

The rest of the paper is organized as follows. Section 2 introduces PMaude

along with its underlying formalism and a translator from PMaude modules
to standard Maude modules. In Section 3 we describe actor PMaude module
with examples. We introduce QuaTEx and a statistical evaluation technique
for QuaTEx in Section 4 followed by a conclusion.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 215

2 PMaude and its Underlying Formalism

In this section, we introduce PMaude and its underlying formalism start-
ing with a brief primer on PMaude and an example. This is followed by a
formal introduction to probabilistic rewrite theories along with background
concepts and notations. We then explain how probabilistic models specified
in PMaude are simulated in the underlying Maude language. The formalism
of probabilistic rewrite theories is given to keep the paper self-contained. Fur-
ther details about the formalism can be found in [20,21]. Readers can go to
Section 2.5 skipping the formalisms given in Section 2.2, 2.3, and 2.4 without
loss of continuity.

2.1 A Primer on PMaude

In a standard rewrite theory [11], transitions in a system are described by
labelled conditional rewrite rules (keyword crl) of the form

crl [L]: t(−→x) ⇒ t′(−→x) if C(−→x) (1)

where we assume that the condition C is purely equational. Intuitively, a
conditional rule (with label L) of this form specifies a pattern t(−→x) such that
if some fragment of the system’s state matches that pattern and satisfies the
condition C, then a local transition of that state fragment, changing into the
pattern t′(−→x) can take place. In a probabilistic rewrite rule we add probability
information to such rules. Specifically, our proposed probabilistic rules are of
the form,

crl [L]: t(−→x) ⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := π(−→x) (2)

where the set of variables in the left hand side term t(−→x) is −→x , while some
new variables −→y are present in the term t′(−→x ,−→y) on the right hand side. Of
course it is not necessary that all of the variables in −→x occur in t′(−→x ,−→y). The
rule will match a state fragment if there is a substitution θ for the variables −→x
that makes θ(t) equal to that state fragment and the condition θ(C) is true.
Because the right hand side t′(−→x ,−→y) may have new variables −→y , the next
state is not uniquely determined: it depends on the choice of an additional
substitution ρ for the variables −→y . The choice of ρ is made according to the
probability function π(θ), where π is not a fixed probability function, but a
family of functions: one for each matching substitution θ of the variables −→x .

It is important to note that our notion of probabilistic rewrite theory
can express both probabilistic and non-deterministic behavior in the following

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239216

pmod EXPONENTIAL-CLOCK is

*** the following imports positive real number module

protecting POSREAL .

*** the following imports PMaude module that defines the distributions EXPONENTIAL,

*** BERNOULLI, GAMMA, etc.

protecting PMAUDE .

*** declare a sort Clock

sort Clock .

*** declare a constructor operator for Clock

op clock : PosReal PosReal → Clock .

*** declares a constructor operator for a broken clock

op broken : PosReal PosReal → Clock .

*** T is used to represent time of clock,

*** C represents charge in the clock’s battery,

*** t represents time increment of the clock

vars T C t : PosReal .

var B : Bool .

rl [advance]: clock(T,C) ⇒
if B then

clock(T+t,C- C
1000

)

else

broken(T,C- C
1000

)

fi

with probability B:=BERNOULLI(C
1000

) and t:=EXPONENTIAL(1.0) .

rl [reset]: clock(T,C) ⇒ clock(0.0,C) .

endpm

Fig. 1. Clock illustrating probabilistic non-deterministic systems

sense: in a concurrent system, at any given point many different rules can
fire. In a probabilistic rewrite theory, the choice of which rules will fire is
non-deterministic. Once a match θ of a given probabilistic rule of the general
form (2) at a given position has been chosen, then the subsequent choice of
the substitution ρ for the variables −→y is made probabilistically according to
the probability distribution function π(θ). In Fig. 1, we illustrate the interplay
between non-determinism and probabilities by means of a simple example in
PMaude, modelling a battery-operated clock with a reset-button. Comments
in PMaude are prefixed with ***.

Example 2.1 .

The module in Fig. 1 imports modules POSREAL and PMAUDE defining the
positive real numbers and probability distributions, respectively. A clock in
normal stable state is represented as a term clock(T,C), where T is the time,
and C is a real number representing the amount of charge left in the clock
battery. The key rule is advance, which has a new boolean variable B and
a positive real number variable t in its righthand side. If all goes well (B =

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 217

true), the clock increments its time by t and the charge is slightly decreased,
but if B = false, the clock will go into state broken(T,C- C

1000
). Here the bi-

nary variable B (boolean in this case) is distributed according to the Bernoulli
distribution with mean C

1000
. Thus the value of B probabilistically depends on

the amount of charge left in the battery: the lesser the charge left in the bat-
tery, the greater is the chance that the clock will break. In this way, PMaude

supports discrete probabilistic choice as in discrete-time Markov chains. The
other extra variable t on the righthand side of the rule advance is distributed
according to the exponential distribution with rate 1.0. Thus, PMaude also
allows us to model stochastic continuous-time as found in continuous-time
Markov chains. The reset rule, which resets the clock to time 0.0, does not
have any extra variables in its righthand side and is therefore standard rewrite
rule. Given a clock expression clock(T,C) one of the two rules advance, or
reset is chosen non-deterministically to apply to the term clock(T,C). If the
rule advance is chosen, then the clock is advanced probabilistically.

Execution of a PMaude module requires transforming it into a corre-
sponding Maude module that simulates its behavior, as explained in Sec-
tion 2.5. One can then obtain a sample execution by giving a rewrite com-
mand with an initial ground term, say clock(0.0, 1000). The result will be an
execution in which the non-determinism about which rule to apply is resolved
by a fair scheduler, but each application of the advance rule chooses the value
of B and t probabilistically.

2.2 Background and Notation

A membership equational theory [26] is a pair (Σ, E), with Σ a signature con-
sisting of a set K of kinds, for each kind k ∈ K a set Sk of sorts, a set of
operator declarations of the form f : k1 . . . kn → k, with k, k1, . . . , kn ∈ K and
with E a set of conditional Σ-equations and Σ-memberships of the form

(∀−→x) t = t′ ⇐u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

(∀−→x) t : s⇐u1 = v1 ∧ . . . ∧ un = vn ∧ w1 : s1 ∧ . . . ∧ wm : sm

The −→x denote variables in the terms t, t′, ui, vi and wj above. A member-
ship w : s with w a Σ-term of kind k and s ∈ Sk asserts that w has sort s.
Terms that do not have a sort are considered error terms. This allows member-
ship equational theories to specify partial functions within a total framework.
A Σ-algebra B consists of a K-indexed family of sets X = {Bk}k∈K , together
with

(i) for each f : k1 . . . kn → k in Σ a function fB : Bk1 × . . . × Bkn
→ Bk

(ii) for each k ∈ K and each s ∈ Sk a subset Bs ⊆ Bk.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239218

We denote the algebra of terms of a membership equational signature by
TΣ. The models of a membership equational theory (Σ, E) are those Σ-algebras
that satisfy the equations E. The inference rules of membership equational
logic are sound and complete [26]. Any membership equational theory (Σ, E)
has an initial algebra of terms denoted TΣ/E which, using the inference rules
of membership equational logic and assuming Σ unambiguous [26], is defined
as a quotient of the term algebra TΣ by

• t ≡E t′ ⇔ E � t = t′

• [t]≡E
∈ TΣ/E,s ⇔ E � t : s

In [10] the usual results about equational simplification, confluence, termi-
nation, and sort-decreasingness are extended in a natural way to membership
equational theories . Under those assumptions a membership equational the-
ory can be executed by equational simplification using the equations from left
to right, perhaps modulo some structural axioms A (e.g. associativity, commu-
tativity, and identity). The initial algebra with equations E and structural ax-
ioms A is denoted TΣ,E∪A. If E is confluent, terminating, and sort-decreasing
modulo A [10], the isomorphic algebra of fully simplified terms (canonical
forms) modulo A is denoted by CanΣ,E/A. The notation [t]A represents the
A-equivalence class of a term t fully simplified by the equations E.

In a standard rewrite theory [24], transitions in a system are described by
labelled conditional rewrite rules of the form

crl [L] : t(−→x) ⇒ t′(−→x) if C(−→x)

Intuitively, a rule (with label L) of this form specifies a pattern t(−→x) such
that if some fragment of the system’s state matches that pattern and satisfies
the condition C, then a local transition of that state fragment, changing into
the pattern t′(−→x) can take place. The Maude system [11,12] provides an
execution environment for membership equational theories and for rewrite
theories of the form (Σ, E, R), with (Σ, E) a membership equational theory,
and R a collection of conditional rewrite rules. Several examples of Maude
specification can be found in [25,12].

To succinctly define probabilistic rewrite theories, we use a few basic no-
tions from measure theory. A σ-algebra on a set X is a collection F of subsets
of X, containing X itself and closed under complementation and finite or
countably infinite unions. For example the power set P(X) of a set X is a
σ-algebra on X. The elements of a σ-algebra are called events. We denote
by BR the smallest σ-algebra on R containing the sets (−∞, x] for all x ∈ R.
We also remind the reader that a probability space is a triple (X,F , π) with
F a σ-algebra on X and π a probability measure function, defined on the σ-

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 219

algebra F which evaluates to 1 on X and distributes by addition over finite
or countably infinite unions of disjoint events. For a given σ-algebra F on X,
we denote by PFun(X,F) the set

{π | (X,F , π) is a probability space}

2.3 Probabilistic Rewrite Theories

We next define probabilistic rewrite theories after the following definition.

Definition 1 (E/A-canonical ground substitution) An E/A-canonical
ground substitution for variables −→x is a function [θ]A : −→x → CanΣ,E/A. We
use the notation [θ]A for such functions to emphasize that an E/A-canonical
substitution is induced by an ordinary substitution θ : −→x → TΣ where, for each
x ∈ −→x , θ(x) is fully simplified by E modulo A. Of course, [θ]A = [ρ]A iff for
each rule x ∈ −→x , [θ(x)]A = [ρ(x)]A. We use CanGSubstE/A(−→x) to denote the
set of all E/A-canonical ground substitutions for the set of variables −→x .

Intuitively an E/A-canonical ground substitution represents a substitution
of ground terms from the term algebra TΣ for variables of the corresponding
sorts, so that all of the terms have already been reduced as much as possible
by the equations E modulo the structural axioms A. For example the sub-
stitution 10.0 × 2.0 for a variable of sort PosReal is not a canonical ground
substitution but a substitution of 20.0 for the same variable is a canonical
ground substitution. We now proceed to define probabilistic rewrite theories.

Definition 2 (Probabilistic rewrite theory) A probabilistic rewrite the-
ory is a 4-tuple R = (Σ, E ∪A, R, π), with (Σ, E ∪A, R) a rewrite theory with
the rules r ∈ R of the form

L : t(−→x) −→ t′(−→x ,−→y) if C(−→x)

where

• −→x is the set of variables in t,

• −→y is the set of variables in t′ that are not in t; thus, t′ might have variables
coming from the set −→x ∪ −→y ; however, it is not necessary that all variables
in −→x occur in t′,

• C is a condition of the form (
∧

j uj = vj) ∧ (
∧

k wk : sk), i.e., C is a
conjunction of equations and memberships, and all the variables in uj, vj

and wk are in −→x ,

and π is a function assigning to each rewrite rule r ∈ R a function

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239220

πr : [[C]] → PFun(CanGSubstE/A(−→y),Fr)

where [[C]] = {[μ]A ∈ CanGSubstE/A(−→x) | E ∪ A � μ(C)} is the set of
E/A-canonical substitutions for −→x satisfying the condition C, and Fr is a σ-
algebra on CanGSubstE/A(−→y). We denote a rule r together with its associated
function πr, by the notation

crl [L]:t(−→x) ⇒ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

If the set CanGSubstE/A(−→y) is empty because −→y is empty then πr(
−→x) is

said to define a trivial distribution; this corresponds to an ordinary rewrite
rule with no probability. If −→y is nonempty but CanGSubstE/A(−→y) is empty
because there is no canonical substitution for some y ∈ −→y because the corre-
sponding sort or kind is empty, then the rule is considered erroneous and will
be disregarded in the semantics.

We denote the class of probabilistic rewrite theories as PRwTh. For the
specification in Example 2.1, the rule advance has two variables B and t on
the righthand side. The possible substitutions for B are true and false with
true chosen with probability C

1000
. Similarly, the possible substitutions for t

are positive real numbers sampled from an exponential distribution with rate
1.0.

2.4 Semantics of Probabilistic Rewrite Theories

Let R = (Σ, E ∪ A, R, π) be a probabilistic rewrite theory such that:

(i) E is confluent, terminating and sort-decreasing modulo A [10].

(ii) the rules R are coherent with E modulo A [11].

Definition 3 (Context) A context C is a Σ-term with a single occurrence of
a single variable, �, called the hole. Two contexts C and C′ are A-equivalent
if and only if A � (∀�) C = C′.

Notice that the relation of A-equivalence for contexts defined above is an
equivalence relation on the set of contexts. We use [C]A for the equivalence
class containing context C.

Definition 4 (R/A-matches) Given [u]A ∈ CanΣ,E/A, its R/A-matches are
triples ([C]A, r, [θ]A), where if r ∈ R is a rule

rl [L]:t(−→x) −→ t′(−→x ,−→y) if C(−→x) with probability −→y := πr(
−→x)

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 221

then [θ]A ∈ [[C]], that is [θ]A satisfies condition C, and [u]A = [C(� ← θ(t))]A,
so [u]A is the result of applying θ to the term t(−→x) and placing it in the context.

For example, the R/A-matches for the term clock(75.0, 800.0) in Example
2.1 are as follows:

• ([�]A, advance, [T ← 75.0, C ← 800.0])

• ([�]A, reset, [T ← 75.0, C ← 800.0])

Definition 5 (E/A-canonical one-step R-rewrite) An E/A-canonical one-
step R-rewrite is a labelled transition of the form,

[u]A
([C]A,r,[θ]A,[ρ]A)−−−−−−−−−→ [v]A

where

(i) [u]A, [v]A ∈ CanΣ,E/A

(ii) ([C]A, r, [θ]A) is an R/A-match of [u]A

(iii) [ρ]A ∈ CanGSubstE/A(−→y)

(iv) [v]A = [C(� ← t′(θ(−→x), ρ(−→y)))]A

The above definition describes the steps involved in a one-step computation
of a PRwTh. First, a R/A-match ([C]A, r, [θ]A) is chosen non-deterministically
for the lefthand side of r, and then a substitution [ρ]A is chosen for the new
variables −→y in the r’s righthand side according to the probability function
πr([θ]A). These two substitutions are then applied to the term t′(−→x ,−→y) to
produce the final term v whose equivalence class [v]A is the result of the step
of computation. The non-determinism associated with the choice of the R/A-
match must be removed in order to associate a probability space over the
space of computations (which are infinite sequences of canonical one-step R-
rewrites). The non-determinism is removed by what is called an adversary
of the system, which defines a probability distribution over the set of R/A-
matches. In [20], we describe the association of a probability space over the set
of computation paths. We have also shown in [20] that probabilistic rewrite
theories have great expressive power. They can express various known models
of probabilistic systems like continuous-time Markov chains [32], probabilis-
tic non-deterministic systems [28,29], and generalized semi-Markov processes
[14].

2.5 Simulating PMaude Specifications in Maude

Due to their non-determinism, probabilistic rewrite rules are not directly exe-
cutable. Consider for example the advance rule in Example 2.1 that advances

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239222

the clock. There are two new variables in its righthand side, namely, a Boolean
variable B, which will determine whether the clock will continue to function
normally or will break, and a positive real variable t, which will determine
the actual time advance of the clock.

However, probabilistic systems specified in PMaude can be simulated in
Maude. This is accomplished by transforming a PMaude specification into a
corresponding Maude specification in which actual values of the new variables
appearing in the righthand side of a probabilistic rewrite rule are obtained
by sampling the corresponding distribution functions. For example, in the
advance rule in our clock example, the Boolean variable B must be sampled
according to the Bernoulli distribution BERNOULLI(C

1000
), whereas the posi-

tive real variable must be sampled according to the exponential distribution
EXPONENTIAL(1.0).

This theory transformation uses three key Maude modules as basic infras-
tructure, namely, COUNTER, RANDOM, and SAMPLER. The module COUNTER pro-
vides a built-in strategy for the application of the non-deterministic rewrite
rule:
rl counter ⇒ N:Nat .

that rewrites the constant counter to a natural number. The built-in strategy
applies this rule so that the natural number obtained after applying the rule is
exactly the successor of the value obtained in the preceding rule application.
The RANDOM module is a built-in Maude module providing a random number
generator function called random. The SAMPLER module provides sampling
functions for different probability distributions. In the above advance rule,
the needed sampling functions are
op EXPONENTIAL : PosReal → PosReal .
op BERNOULLI : PosReal → Bool .

The key rule in the SAMPLER module is the rule
rl [rnd] : rand ⇒ float(random(counter + 1) / 4294967296) .

which rewrites the constant rand to a floating point number between 0 and 1
pseudo-randomly chosen according to the uniform distribution. This floating
point number is obtained by converting the rational number random(counter
+ 1) / 4294967296 into a positive real number, where 4294967296 is the
maximum value that the random function can attain. The rewrite rules defin-
ing the semantics of the EXPONENTIAL and BERNOULLI sampling functions are
then
rl EXPONENTIAL(R) ⇒ (- log(rand)) / R .
rl BERNOULLI(R) ⇒ if rand < R then true else false fi .

The result of transforming the PMaude module in Example 2.1, is then
the module

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 223

mod EXPONENTIAL-CLOCK-TRANSFORMED is

protecting POSREAL .

protecting PMAUDE .

sort Clock .

op clock : PosReal PosReal → Clock .

op broken : PosReal PosReal → Clock .

vars T C t : PosReal .

var B : Bool .

rl [advance]: clock(T,C) ⇒
if BERNOULLI(C

1000
) then

clock(T+EXPONENTIAL(1.0),C- C
1000

)

else

broken(T,C- C
1000

)

fi

rl [reset]: clock(T,C) ⇒ clock(0.0,C) .

endm

We can then use this transformed module to simulate the original EXPONEN-
TIAL-CLOCK PMaude module. In particular, as explained in Section 4, we can
use the results of performing Monte-Carlo simulations in this way to formally
analyze probabilistic properties of a system, provided all non-determinism
has been eliminated from the original PMaude module. In example 2.1 this
elimination of non-determinism has not happened because the reset rule and
the advance rule could both be applied to a clock. However, it would be easy
to transform this example into one where such non-determinism has been
replaced by probabilities. In section 3 we give a general method to specify
probabilistic object-oriented distributed systems in a way that eliminates all
non-determinism and makes them amenable to the form of statistical analysis
discussed in Section 4.

3 Actor PMaude

An actor [2,4] is a concurrent object encapsulating a state and having a unique
name. Actors communicate asynchronously by sending messages to each other.
On receiving a message, an actor changes its state and sends messages to other
actors. Actors provide a natural formalism to model and reason about dis-
tributed and concurrent systems. We provide the module, actor PMaude, to
aid high level modelling of various concurrent and distributed object systems.

Another motivation for writing a specification in actor PMaude is that
it allows us to easily write specifications that have no non-determinism. To
ensure absence of non-determinism in an actor PMaude specification, we
outline simple requirements in Section 3.1. Absence of non-determinism is
necessary for statistical analysis as described briefly in Section. 4.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239224

In actor PMaude, we introduce stochastic real-time to capture the dy-
namics of various elements of a system. Specifically, we assume that both
message passing and computation by an actor on receiving a message may
take some positive real-valued time. This time can be distributed according
to some continuous probability distribution function. In an actor PMaude

specification, in addition to the functional description of the actors and their
computations, we explicitly describe the probability distributions associated
with message passing time and computation time. We also allow time associ-
ated with message passing or computation to be zero, to indicate synchronous
communication and instant computation, respectively. We next describe the
actor PMaude module along with the semantics for one-step computation
which is required for discrete event simulation.

The definition of the various sorts and operators for the actor PMaude

module is given in Fig. 2. A term of sort Actor represents an actor. An actor
has a unique name (a term of sort ActorName) and a list of named attributes
(a term of the sort AttributeList). The attribute list of an actor, which is a
list of terms of the sort Attribute, represents the state of an actor. An actor
is constructed by the mixfix operator 5 〈name: | 〉 that maps an actor name
and a list of attributes to an actor.

A message is represented by a term of sort Msg. A message contains an
address or the name of the actor to which it is targeted and a content (a term
of sort Content). A message is constructed by the operator ← that maps
an actor name and a content to a message. An actor on receiving a message
can change it state, i.e. its attributes, and can send out messages to other
actors.

An actor or a message can be generically represented by a term of sort
Object, whose subsorts are Actor and Msg. To model stochastic real-time as-
sociated with message passing delay or actor computation, we make a message
or an actor, respectively, inactive up to a given global time by enclosing them
between square brackets []. A term of sort ScheduledObject represents an
object which is not yet active or available to the system. We call such objects
scheduled objects. A scheduled object is constructed by the operator [,]

that maps a time (a term of the sort PosReal) and an object (i.e. an actor or
a message) to a scheduled object. The time indicates the global time at which
the object will become available to the system.

A term of sort Config represents a multiset of objects, scheduled objects,
and a global time combined with an empty syntax (juxtaposition) multiset
union operator that is declared associative and commutative. The global state
of a system is represented by a term of the sort Config containing

5 The underscores () in a mixfix operator represent the placeholders for its arguments.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 225

(i) a multiset of objects,

(ii) a multiset of scheduled objects, and

(iii) a global time (a term of the sort PosReal) 6 .

The ground terms empty, nil, and null represents constants of the sorts
Content, AttributeList, and Config, respectively.

The module also defines a special tick rule which is omitted from Fig. 2
for brevity. The description of the tick rule is given below, where we define
an one-step computation of a model written in actor PMaude.

One-Step Computation:

An one-step computation of a model written in actor PMaude is a tran-
sition of the form

[u]A
¬tick−−−→∗[v]A

tick−−→ [w]A

where

(i) [u]A is a canonical term of sort Config, representing the global state of
a system,

(ii) [v]A is term obtained after a sequence (zero or more) of one-step rewrites
such that
• in none of those rewrites is the tick rule applied, and
• [v]A cannot be further rewritten by applying any rule except the tick

rule.

(iii) [w]A is obtained after a one-step rewrite of [v]A by applying the tick

rule, which does the following
• finds and removes the scheduled object, if one exists, with the smallest

global time, say [T’,Obj], from the term [v]A to a term, say [v′]A,
• adds the term Obj to [v′]A through multiset union to get the term [v′′]A,

and
• replaces the global time of the term [v′′]A with T’ to get the final term

[w]A.

Such a one-step computation represents a single step in a discrete-event sim-
ulation of a model written in actor PMaude.

Example 3.1 As an example, let us consider the model in Fig. 3. In the
example, a client c continuously sends messages to a server s. The time
interval between the messages is distributed exponentially with rate 2.0. The
message sending of the client is triggered when it receives a self-sent message

6 Note that PosReal is a subset of Configuration.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239226

mod ACTORS is

protecting PosReal .

sorts ActorName Attribute AttributeList Content .

sorts Actor Msg Object Config ScheduledObject .

subsort Attribute < AttributeList .

subsort Actor < Object .

subsort Msg < Object .

subsort Object < Config .

subsort PosReal < Config .

subsort ScheduledObject < Config .

op empty : → Content .

op _← _ : ActorName Content → Msg .

op 〈name:_|_〉 : ActorName AttributeList → Actor .

op nil : → AttributeList .

op null : → Config .

op __ : Config Config → Config [assoc comm id: null] .

op _,_ : AttributeList AttributeList → AttributeList [assoc id: nil] .

op [_,_] : PosReal Object → ScheduledObject .

*** tick rule is omitted for brevity

endm

Fig. 2. Actor PMaude module

of the form (C← empty). The delay associated with the message from the
client to the server is distributed exponentially with rate 10.0 (see rule labelled
send). The message contains a natural number which is incremented by 1 by
the client, each time it sends a message. The server, when not busy, can
receive a message and increment its attribute total by the number received
in the message (see rule labelled compute). If the server is busy processing
a message (computation time is exponentially distributed with rate 1.0), it
drops any message it receives (see rule labelled busy-drop). Note that we can
modify the rule busy-drop to allow the server actor to enqueue any message
it receives when it is busy.

The rule for sending a message by a client C to a server S is labelled by
send. The lefthand side of the rule matches a fragment of the global state
consisting of a client actor of the form 〈name: C | counter: N, server:

S〉, a message of the form (C← empty), and a global time of the form T.
The rule states that the client C, on receiving an empty message, produces
two messages: an empty message to itself and a message to a server, whose
name is contained in its attribute server. Both the messages were produced
as scheduled objects to represent that they are inactive till the delay time
associated with the messages has elapsed. The delay times t1 and t2 are
substituted probabilistically.

Note that the model has no non-determinism. All non-determinism has
been replaced by probabilistic choices. A model with no non-determinism is
a key requirement for our statistical analysis technique briefly described in

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 227

apmod SIMPLE-CLIENT-SERVER is

protecting PMAUDE .

including ACTORS .

protecting NAT .

vars t t1 t2 T : PosReal .

vars C S : ActorName .

vars N M : Nat .

op counter:_ : Nat → Attribute .

op server:_ : ActorName → Attribute .

op total:_ : Nat → Attribute .

op ctnt : Nat → Content .

rl [send]: 〈name: C | counter: N, server: S〉 (C← empty) T ⇒
〈name: C | counter: N+1, server: S〉 [T+t1,(C← empty)] [T+t2,(S← ctnt(N))] T

with probability t1:=EXPONENTIAL(2.0) and t2:=EXPONENTIAL(10.0) .

rl [compute]: 〈name: S | total: M〉 (S← ctnt(N)) T ⇒ [T+t,〈name: S | total: M+N〉] T

with probability t:=EXPONENTIAL(1.0) .

rl [busy-drop]: [t,〈name: S | total: M〉] (S← ctnt(N)) ⇒ [t,〈name: S | total: M〉] .

op init : → Config .

op c : → ActorName .

op s : → ActorName .

eq init = 〈name: c | counter: 0, server: s〉 〈name: s | total: 0〉 (c← empty) 0.0 .

endapm

Fig. 3. A simple Client-Server model with exponential distribution on message sending delay and
computation time by the server

Section. 4. We next give sufficient conditions to ensure that a specification
written in actor PMaude has no non-determinism.

3.1 Sufficient conditions for absence of un-quantified non-determinism in an
actor PMaude specification:

(i) The initial global state of the system or the initial configuration can have
at most one non-scheduled message.

(ii) The computation performed by any actor after receiving a message must
have no un-quantified non-determinism; however, there may be proba-
bilistic choices.

(iii) The messages produced by an actor in a particular computation (i.e. on
receiving a message) can have at most one non scheduled message.

(iv) No two scheduled objects become active at the same global time. This is
ensured by associating continuous probability distributions with message
delays and computation time.

We next provide the specification of a practical system to show the expres-
siveness of actor PMaude.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239228

Example 3.2 The model of a symmetric polling server [19] with 5-stations
is given in Fig. 4. Each station has a single-message buffer and they are
cyclically attended to by a single server. The server polls a station i. If there
is a message in the buffer of station i, then the server serves the station. Once
the station is served, or once the station is polled in case the station has an
empty buffer, the server moves on to poll the station (i+1) modulo N , where
N is the number of stations. The polling time, the service time, and the time
for arrival of a message at each station is exponentially distributed. Note that
this model can be represented by a continuous-time Markov chain.

In Fig. 4, we modelled each station and the server as actors. Messages that
arrive at each station-actor are modelled as self-sending scheduled messages
having exponentially distributed delays (see rule labelled produce). The start
of polling of a station by the server is modelled as an instantaneous poll

message (i.e. with no delay) sent by the server to the station (see rule labelled
next). On receiving a poll message, a station sends itself a scheduled serve

message (see rule labelled poll), i.e. a message having delay equal to the
polling time. On receiving a serve message, if the station finds that its buffer
is empty, it sends an instantaneous next message (i.e. with no message delay)
to the server indicating that the server needs to poll the next station (see rule
labelled serve). Otherwise, if the buffer has a message (indicated by non-zero
value of the attribute buf), it sends itself a scheduled done message (i.e. a
message having delay equal to the serving time). On receiving a done message,
the station sends an instantaneous next message (i.e. with no message delay)
to the server indicating that the server needs to poll the next station (see rule
labelled served).

Note that the model has no un-quantified non-determinism, since it meets
the conditions given in Section 3.1.

A more complex example of modelling and analysis of a denial of service
resistant TCP/IP protocol can be found in [3].

4 QuaTEx

Once a probabilistic system has been specified in PMaude using criteria such
as those in Section 3.1 that ensure that there is no non-determinism, we want
to formally analyze the system by evaluating various quantitative properties
of the system. In this section we introduce a language to express various
quantitative properties of a probabilistic system. We also give a statistical
technique to evaluate such properties.

To query various quantitative aspects of a probabilistic model, we intro-
duce a query language called Quantitative Temporal Expressions (or QuaTEx

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 229

apmod SYMMETRIC-POLLING is

protecting PMAUDE . including ACTORS . protecting NAT . protecting POSREAL .

*** Variable declarations.

vars t T : PosReal . vars C S : ActorName . vars N M : Nat .

*** Operator declarations.

op buf:_ : Nat → Attribute .

op server:_ : ActorName → Attribute .

op client:_ : Nat → Attribute .

op station:_ : Nat → ActorName .

ops poll serve done next : → Content .

op increment : Nat → Nat .

*** Each station produces messages at the rate of 0.2. For this each station sends a message

*** to itself with message delay exponentially distributed with rate 0.2.

rl [produce]: 〈name: C | buf: M, server: S〉 (C← empty) T

⇒〈name: C | buf: 1, server: S〉 [T+t,(C← empty)] T

with probability t:=EXPONENTIAL(0.2) .

*** On receiving a poll message from the server, the station sends a scheduled serve message

*** to itself to imitate the time associated with polling.

rl [poll]: 〈name: C | buf: M, server: S〉 (C← poll) T

⇒ 〈name: C | buf: M, server: S〉 [T+t,(C← serve)] T

with probability t:=EXPONENTIAL(200.0) .

*** On receiving a serve message, if the buffer is empty then the station sends a next message

*** to the server; otherwise, it send a scheduled done message to itself.

rl [serve]: 〈name: C | buf: M, server: S〉 (C← serve) T ⇒
if M > 0 then

〈name: C | buf: M, server: S〉 [T+t,(C← done)] T

else

〈name: C | buf: M, server: S〉 (S← next) T

fi with probability t:=EXPONENTIAL(1.0) .

*** On receiving a done message, the station sends a next message to the server.

rl [served]: 〈name: C | buf: M, server: S〉 (C← done)

⇒〈name: C | buf: 0, server: S〉 (S← next) .

*** On receiving a next message, the server sends a poll message to the next station.

rl [next]: 〈name: S | client: N〉 (S← next) T

⇒ 〈name: S | client: increment(N)〉 (station(N)← poll) T .

*** Define increment as increment(N) = (N+1) modulo 5, which is the number of stations

eq increment(N) = if N >= 5 then 1 else N+1 fi .

*** Create the initial configuration with 5 stations and 1 server and a next message.

op init : → Config .

op s : → ActorName .

eq init = 〈name: s | client: 1〉 (s← next) 0.0 〈name: station(1) | buf: 1, server: s〉
〈name: station(2) | buf: 1, server: s〉 〈name: station(3) | buf: 1, server: s〉
〈name: station(4) | buf: 1, server: s〉 〈name: station(5) | buf: 1, server: s〉 .

endapm

Fig. 4. Symmetric Polling System with 5-stations

in short). The language is mainly motivated by probabilistic computation tree
logic (PCTL) [15] and Eagle [7]. In QuaTEx, some example queries that
can be encoded are as follows:

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239230

(i) Out of 100 clients, what is the expected number of clients that successfully
connect to a server under a denial of service attack?

(ii) What is the probability that a client connected to a server within 10
seconds after it initiated the connection request?

QuaTEx is more expressive than PCTL. In QuaTEx, one can query the
expected value of any expression rather than simple probabilities as in PCTL.
Moreover, the path expressions in QuaTEx can have any level of nesting of
other path expressions. In PCTL, one can only use state formulas in path
formulas. This strictly disallows nesting of path formulas directly into other
path formulas.

We next introduce the notation that we will use to describe the syntax and
the semantics of QuaTEx, followed by a few motivating examples.

We assume that an execution path is an infinite sequence
π = s0 → s1 → s2 → · · ·

where s0 is the unique initial state of the system, typically a term of sort
Config representing the initial global state, and si is the state of the system
after the ith computation step. If the kth state of this sequence cannot be
rewritten any further (i.e. is absorbing), then si = sk for all i ≥ k.

We denote the ith state in an execution path π by π[i] = si. Also, we denote
the suffix of a path π starting at the ith state by π(i) = si → si+1 → si+2 → · · · .
We let Path(s) be the set of execution paths starting at state s. Note that,
because the samples are generated through discrete-events simulation of a
PMaude model with no non-determinism, Path(s) is a measurable set and has
an associated probability measure. This is essential to compute the expected
value of a path expression from a given state.

4.1 QuaTEx through Examples

The language QuaTEx, which is designed to query various quantitative as-
pects of a probabilistic model, allows us to write temporal query expressions
like temporal formulas in a temporal logic. It supports a framework for pa-
rameterized recursive temporal operator definitions using a few primitive non-
temporal operators and a temporal operator (©). The temporal operator ©,
called the next operator, takes an expression at the next state and makes it
an expression for the current state. For example, suppose we want to know
“the probability that along a random path from a given state, the client C gets
connected with S within 100 time units.” This can be written as the following
query:

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 231

IfConnectedInTime(t) = if t > time() then 0 else if connected() then 1

else © (IfConnectedInTime(t)) fi fi;

eval E[IfConnectedInTime(time() + 100)];

The first two lines of the query define the recursive temporal operator IfCon-
nectedInTime(t), which returns 1, if along an execution path C gets connected
to S within time t and returns 0 otherwise. The state function time() returns
the global time associated with the state; the state function connected() re-
turns true, if in the state, C gets connected with S and returns false otherwise.
Then the state query at the third line returns the expected number of times
C gets connected to S within 100 time units along a random path from a
given state. This number lies in [0, 1] since along a random path either C gets
connected to S within 100 time units or C does not get connected to S within
100 time units. In fact, this expected value is equal to the probability that
along a random path from the given state, the client C gets connected with S
within 100 time units.

A further rich query is as follows:

NumConnectedInTime(t, count) = if t > time() then count

else if anyConnected() then © (NumConnectedInTime(t, 1 + count))

else © (NumConnectedInTime(t, count)) fi fi;

eval E[NumConnectedInTime(time() + 100, 0)]

In this query, the state function anyConnected() returns true if any client Ci

gets connected to S in the state. We assume that in a given execution path,
at any state, at most one client gets connected to S.

4.2 Syntax of QuaTEx

The syntax of QuaTEx is given in Fig. 5. A query in QuaTEx consists of
a set of definitions D followed by a query of the expected value of a path ex-
pression PExp. In QuaTEx, we distinguish between two kinds of expressions,
namely, state expressions (denoted by SExp) and path expressions (denoted
by PExp); a path expression is interpreted over an execution path and a state
expression is interpreted over a state. A definition Defn ∈ D consists of a
definition of a temporal operator. A temporal operator definition consists of
a name N and a set of formal parameters on the left-hand side, and a path
expression on the right-hand side. The formal parameters denote the freeze
formal parameters. When using a temporal operator in a path expression, the
formal parameters are replaced by state expressions. A state expression can
be a constant c, a function f that maps a state to a concrete value, a k-ary

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239232

Q ::= D eval E[PExp];

D ::= set of Defn

Defn ::= N(x1, . . . , xm) = PExp;

SExp ::= c | f | F (SExp1, . . . , SExpk) | xi

PExp ::= SExp | ©N(SExp1, . . . , SExpn)

| if SExp then PExp1 else PExp2 fi

Fig. 5. Syntax of QuaTEx

function mapping k state expressions to a state expression, or a formal param-
eter. A path expression can be a state expression, a next operator followed by
an application of a temporal operator defined in D , or a conditional expression
if SExp then PExp1 else PExp2 fi. We assume that expressions are
properly typed. Typically, these types would be integer, real, boolean etc.
The condition SExp in the expression if SExp then PExp1 else PExp2 fi

must have the type boolean. The temporal expression PExp in the expres-
sion E[PExp] must be of type real. We also assume that expressions of type
integer can be coerced to the real type.

4.3 Semantics of QuaTEx

Next, we give the semantics of a subset of query expressions that can be writ-
ten in QuaTEx. In this subclass, we impose the restriction that the value
of a path expression PExp that appears in any expression E[PExp] can be
determined from a finite prefix of an execution path. We call such tempo-
ral expressions bounded path expressions. The semantics is given in Fig. 6.
(π)[[PExp]]D is the value of the path expression PExp over the path π. Simi-
larly, (s)[[SExp]]D is the value of the state expression SExp in the state s. Note
that if the value of a bounded path expression can be computed from a finite
prefix πfin of an execution path π, then the evaluations of the path expression
over all execution paths having the common prefix πfin are the same. Since a
finite prefix of a path defines a basic cylinder set (i.e. a set containing all paths
having the common prefix) having an associated probability measure, we can
compute the expected value of a bounded path expression over a random path
from a given state. In our analysis tool, we statistically estimate the expected
value through Monte-Carlo simulation instead of calculating it exactly based
on the underlying probability distributions of the model. The exact procedure
is described in Section 4.5.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 233

(s)[[c]]D = c

(s)[[f]]D = f(s)

(s)[[F (SExp1, . . . , SExpk)]]D = F ((s)[[SExp1]]D , . . . , (s)[[SExpk]]D)

(s)[[E[PExp]]]D = E[(π)[[PExp]]D] for π ∈ Paths(s)

(π)[[SExp]]D = (π[0])[[SExp]]D

(π)[[if SExp then PExp1 else PExp2 fi]]D =

if (π[0])[[SExp]]D = true then (π)[[PExp1]]D else (π)[[PExp2]]D

(π)[[©N(SExp1, . . . , SExpm)]]D =

(π(1))[[B[x1 �→ (π[0])[[SExp1]]D , . . . , xm �→ (π[0])[[SExpm]]D]]]D

where N(x1, . . . , xm) = B;∈ D

Fig. 6. Semantics of QuaTEx

4.4 Example Encoding of Standard Temporal Operators

In probabilistic computation tree logic (PCTL) [15] and continuous stochastic
logic (CSL) [1,6] a compound temporal logic operator is the until operator
U . A path satisfies φ1Uφ2, iff some state s along the path satisfies φ2 and
all states before s along the path satisfies φ1. We can easily encode the until
operator as follows:

Until(φ1, φ2) = if φ2 then 1 else if φ1 then © (Until(φ1, φ2)) else 0 fi fi;

The operator takes as arguments two state expressions φ1 and φ2 of type
Boolean. It returns 1 if φ1UΦ2 holds along the path and 0 otherwise. We
return 1 and 0 instead of true or false because we may want to calculate the
probability that a path from a given state satisfies φ1Uφ2, i.e., Pr [φ1Uφ2]. For
example the following QuaTEx expression

Until(φ1, φ2) = if φ2 then 1 else if φ1 then © (Until(φ1, φ2)) else 0 fi fi;

eval E[Until(¬resend(), receive())]

queries the probability that a message is received without re-sending. The
state predicates (or state expressions of type Boolean) resend() and receive()
returns true iff a message is re-sent and received in the current state, respec-
tively. Note that ¬ is a unary function with the usual meaning mapping a
state expression to another state expression.

Similarly, we can encode the bounded until operator φ1 U≤tφ2 of CSL as
follows:

UntilBounded(φ1, φ2, t) = if t > time() then 0 else if φ2 then 1 else

if φ1 then © (UntilBounded(φ1, φ2, t)) else 0 fi fi fi;

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239234

where the state function time() returns the global time associated with the
state.

However, QuaTEx is more expressive than the temporal logic operators of
PCTL and CSL. It can be used for counting as described through an example
in Section 4.1. It can be used to relate data temporally. For example, suppose
we want to know “the probability that along a random path from a given state,
if a message is sent then the same message is received within 100 time units.”
This can be written as the following query:

Received(m, t) = if t > time() then 0 else if receive(m) then 1

else © (Received(m, t)) fi fi;

eval E[if send() then Received(messageId(), 100 + time()) else 1 fi]

where, the state function time() returns the global time associated with the
state; the state function send() returns true, iff in the state a message is
sent; receive(m) returns true, iff in the state a message with id m is received;
messageId(m) returns the id of the message that is sent in the current state.
Note that along a path, the path expression if send() then Received(message-
Id(), 100+ time()) else 1 fi returns 1 if a message is sent in the current state
and the same message (i.e. the message having the same id) is received within
100 time units at some later state. Here the data, message id, is related
temporally which is otherwise not possible using the traditional probabilistic
temporal logics.

4.5 Statistical Evaluation of a QuaTEx Expression

Given a probabilistic model and a QuaTEx expression, we evaluate the ex-
pression at the initial state of the model. The evaluation of all path and
state expressions, except the expectation expression, is straightforward and
follows directly from the semantics. However, the evaluation of an expression
of the form E[PExp] can be difficult to compute numerically for a complex
probabilistic model. For example, at a given state the probability of a PCTL
path formula, which can be expressed as an expression in QuaTEx, cannot
be computed numerically for a complex probabilistic model such as General-
ized Semi-Markov Processes (GSMP) [14]. The expected value of a QuaTEx

expression is statistically evaluated with respect to two parameters α and δ
provided as input. Specifically, we approximate the expected value by the
mean of n samples such that the size of (1 − α)100% confidence interval [18]
for the expected value computed from the samples is bounded by δ. We next
describe the details of this computation.

Let X be random variable giving the value of the expression PExp along a

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 235

random path π from a state s. Then (s)[[E[PExp]]]D = E[X]. Let X1, . . . , Xn

be n random variables having the same distribution as X. By Central Limit
Theorem [18], we know that if

Z =
X̄ − μ

S/
√

n

where X̄ =
P

i∈[1,n] Xi

n
, S2 =

P
i∈[1,n] X2

i −X̄2

n−1
, and μ = E[X], then Z has student’s

t-distribution with n−1 degrees of freedom for large enough n. If T is random
variable having t-distribution with k degrees of freedom, then we define tα,k

as follows:

Pr[T < tα,k] = 1 − α

The values of tα,k for various values of α and k can be obtained from a distri-
bution table or by numerical computation.

Let x1, . . . , xn be n samples from X. Then for large enough n (i.e. n > 30)
a (1 − α)100% confidence interval is given by

(x̄ − tα/2,n−1
s√
n

, x̄ + tα/2,n−1
s√
n

)

where x̄ =
P

i∈[1,n] xi

n
, s2 =

P
i∈[1,n] x2

i−x̄2

n−1
. We want the size of this (1 − α)100%

confidence interval to be less than or equal to δ. That is we want

2tα/2,n−1
s√
n
≤ δ

We compute E[X] iteratively using the function computeExpectedValue-
OfX() described below. The function iteratively tries to find a sample size
n, such that a (1− α)100% confidence interval computed from n samples has
a size less than or equal to δ. The mean of these n sample, i.e. x̄, is then
returned as the estimated value for E[X].

computeExpectedValueOfX ()
Input: α, δ, X the random variable
Output: Approximate E[X]
begin

n = 0;
while(d > δ)
begin

n = n + 100;
Let x1, . . . , xn be n samples of X
d = 2tα/2,n−1

s√
n

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239236

end

return x̄
end

4.6 Implementation

We have implemented the evaluator for QuaTEx in Java. The tool, called
VeStA, takes as input an actor PMaude model, an initial actor PMaude

term representing the initial configuration of the system, and a QuaTEx

expression along with the two parameters α and δ.

VeStA performs discrete-event simulation by invoking the Maude interpret-
er[12]. VeStA maintains the current configuration of the system as an actor
PMaude term represented as a Java string. This term is initialized to the ini-
tial actor PMaude term provided as input. At every simulation step, VeStA

passes the current configuration term to the Maude interpreter for a one-step
computation and obtains the result of rewriting as a term representing the
next configuration. The value of the application of a function on the current
state, as required by certain QuaTEx expressions, is computed by VeStA

by parsing the current configuration term.

5 Conclusion

We have introduced PMaude, a rewrite-based formal modelling language for
probabilistic concurrent systems with support for discrete-event simulation
and statistical analysis. One important advantage of PMaude is that the
well-known expressiveness of rewrite rules to specify concurrent systems [25]
is in this way naturally extended to specify concurrent probabilistic systems.
In fact, a PMaude specification may have both probabilistic rewrite rules and
ordinary rewrite rules, which can be viewed as a no-probability special case of
probabilistic rules. The language allows high-level specification of a wide-range
of probabilistic systems. In particular, it supports concurrent object-oriented
programming through actors. PMaude specifications can be simulated in the
underlying Maude language. We have also introduced QuaTEx, a language
to specify quantitative temporal expressions that can be used to query various
quantitative aspects of a probabilistic model. We have already used PMaude

and VeStA to model and analyze a DoS resistant TCP/IP protocol [3]. We
plan to use the tool to model and analyze various other network protocols.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 237

Acknowledgement

The authors would specially like to acknowledge Nirman Kumar for his contri-
bution to the development of an earlier finitary version of PMaude. The work
is supported in part by the DARPA IXO NEST Program F33615-01-C-1907,
the ONR Grant N00014-02-1-0715, and the Motorola Grant MOTOROLA
RPF #23.

References

[1] A. Aziz, K. Sanwal, V. Singhal, and R. K. Brayton. Verifying continuous-time Markov chains.
In Proceedings of the 8th International Conference on Computer Aided Verification (CAV’96),
volume 1102, pages 269–276. Springer, 1996.

[2] G. Agha. Actors: A Model of Concurrent Computation. MIT Press, 1986.

[3] G. Agha, C. Gunter, M. Greenwald, S. Khanna, J. Meseguer, K. Sen, and P. Thati. Formal
modeling and analysis of dos using probabilistic rewrite theories. In Workshop on Foundations
of Computer Security (FCS’05) (Affiliated with LICS’05), 2005.

[4] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7:1–72, 1997.

[5] M. Astley and G. A. Agha. Customization and composition of distributed objects: middleware
abstractions for policy management. In SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM
SIGSOFT international symposium on Foundations of software engineering, pages 1–9, 1998.

[6] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous-time Markov
chains. ACM Transactions on Computational Logic, 1(1):162–170, 2000.

[7] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In
Proceedings of 5th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’04), volume 2937 of Lecture Notes in Computer Science, pages 44–
57. Springer-Verlag, January 2004.

[8] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In Proceedings of 15th Conference on the Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’95), volume 1026 of LNCS.

[9] H. C. Bohnenkamp, H. Hermanns, J.-P. Katoen, and R. Klaren. The modest modeling tool and
its implementation. In 13th International Conference on Computer Performance Evaluations,
Modelling Techniques and Tools, volume 2794 of Lecture Notes in Computer Science, pages
116–133. Springer, 2003.

[10] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership
equational logic. Theoretical Computer Science, 236(1–2):35–132, 2000.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. Quesada. Maude:
specification and programming in rewriting logic. Theoretical Computer Science, 285:187–243,
2002.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. Maude
2.0 Manual, Version 1.0, june 2003. http://maude.cs.uiuc.edu/maude2-manual/.

[13] P. D’Argenio. Algebras and automata for timed and stochastic systems. PhD thesis, University
of Twente, Enschede, The Netherlands, 1999.

[14] P. W. Glynn. On the role of generalized semi-markov processes in simulation output analysis.
In WSC ’83: Proceedings of the 15th IEEE conference on Winter simulation, pages 39–44,
1983.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239238

http://maude.cs.uiuc.edu/maude2-manual/

[15] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

[16] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evaluation.
Theoretical Compututer Science, 274(1-2):43–87, 2002.

[17] J. Hillston. A Compositional Approach to Performance Modelling. Distinguished Dissertations
Series. Cambridge University Press, 1996.

[18] R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics. Macmillan, New York,
NY, USA, fourth edition, 1978.

[19] O. C. Ibe and K. S. Trivedi. Stochastic petri net models of polling systems. IEEE Journal on
Selected Areas in Communications, 8(9):1649–1657, Dec. 1990.

[20] N. Kumar, K. Sen, J. Meseguer, and G. Agha. Probabilistic rewrite theories: Unifying models,
logics and tools. Technical Report UIUCDCS-R-2003-2347, University of Illinois at Urbana-
Champaign, May 2003.

[21] N. Kumar, K. Sen, J. Meseguer, and G. Agha. A rewriting based model for probabilistic
distributed object systems. In Proceedings of 6th IFIP International Conference on Formal
Methods for Open Object-based Distributed Systems (FMOODS’03), volume 2884 of Lecture
Notes in Computer Science, pages 32–46. Springer, 2003.

[22] M. Z. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic symbolic model checker,
2002.

[23] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Modelling with
Generalized Stochastic Petri Nets. John Wiley and Sons, 1995.

[24] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992.

[25] J. Meseguer. A logical theory of concurrent objects and its realization in the Maude language.
In Research Directions in Concurrent Object-Oriented Programming, pages 314–390. MIT
Press, 1993.

[26] J. Meseguer. Membership algebra as a logical framework for equational specification. In
F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS 1376, 1998.

[27] P. C. Ölveczky and J. Meseguer. Specification of real-time and hybrid systems in rewriting
logic. Theoretical Computer Science, 285:359–405, 2002.

[28] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, 1994.

[29] R. Segala. Modelling and Verification of Randomized Distributed Real Time Systems. PhD
thesis, Massachusetts Institute of Technology, 1995.

[30] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box probabilistic
systems. In 16th conference on Computer Aided Verification (CAV’04), volume 3114 of Lecture
Notes in Computer Science, pages 202–215. Springer, July 2004.

[31] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic systems.
In 17th conference on Computer Aided Verification (CAV’05), volume 3576 of Lecture Notes
in Computer Science (To Appear), Edinburgh, Scotland, July 2005. Springer.

[32] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton, 1994.

[33] D. C. Sturman and G. Agha. A protocol description language for customizing semantics. In
Symposium on Reliable Distributed Systems, pages 148–157, 1994.

G. Agha et al. / Electronic Notes in Theoretical Computer Science 153 (2006) 213–239 239

	Introduction
	PMaude and its Underlying Formalism
	A Primer on PMaude
	Background and Notation
	Probabilistic Rewrite Theories
	Semantics of Probabilistic Rewrite Theories
	Simulating PMaude Specifications in Maude

	Actor PMaude
	Sufficient conditions for absence of un-quantified non-determinism in an actor PMaude specification:

	QuaTEx
	QuaTEx through Examples
	Syntax of QuaTEx
	Semantics of QuaTEx
	Example Encoding of Standard Temporal Operators
	Statistical Evaluation of a QuaTEx Expression
	Implementation

	Conclusion
	References

